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Abstract

An efficient coupled electromechanical model is developed for multilayered composite beams with embedded or
surface bonded piezoelectric laminae subjected to static electromechanical excitation. The model combines third order
zigzag approximations for the displacement field with a layerwise representation of the electric field. Interfacial con-
tinuity of the inplane displacement and the transverse shear stress and traction free conditions on the top and bottom
surfaces are ensured under general electromechanical loading situation. The model allows for a non-uniform variation
of transverse displacement in the piezoelectric layers caused by the electric field induced normal transverse strain. The
theory has the same number of primary variables as first order theory and hence the computational cost is independent
of the number of layers in the laminate. The governing equations of stress and charge equilibrium and the variationally
consistent boundary conditions are derived from the principle of virtual work. To illustrate the accuracy, applicability
and robustness of the theory, an analytical solution is obtained for hybrid beams with simply supported ends. Present
results for simply supported hybrid beams with sensory and actuated piezoelectric layers are compared with the exact
three dimensional solution and uncoupled first order theory solution. The present results show significant improvement
over the first order solution and compare very well with the exact solution for both thin and thick piezoelectric lami-
nated beams. Capability of the developed theory to model sensory, active and combined response of smart composite
beams with general laminate configurations has been demonstrated through additional numerical examples. Feasibility
of controlling deflection by applying appropriate actuation potential has been illustrated. © 2001 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

Hybrid beams and plates made up of an elastic multilayered substrate with embedded or surface-bonded
piezoelectric sensory and actuator layers constitute an important class of smart structures which have re-
ceived enormous research attention in recent years. Due to inhomogeneities in the mechanical properties
across the thickness and presence of electric heterogeneity caused by the embedded piezoelectric layers,
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analysis of these structures requires appropriate electromechanical modelling. Ideally, an accurate response
of these hybrid structures, in the domain of linear piezoelasticity, can be obtained by solving the three
dimensional (3D) coupled field equations subject to the exact satisfaction of the boundary and interlaminar
continuity conditions. 3D analytical solutions have been presented for the piezoelectric response of simply
supported infinite hybrid flat panels (Ray et al., 1992, 1993; Brooks and Heyliger, 1994; Zhou and Tiersten,
1994; Kapuria et al., 1997a) and rectangular plates (Heyliger, 1994; Lee and Jiang, 1996). Finite element
models for piezoelectric plate structures based on the 3D theory have also been presented (see e.g. Naillon
et al., 1983; Ha et al., 1992). The exact 3D analytical solutions are, however, available only for some regular
shapes with specific boundary conditions. On the other hand, its finite element implementation typically
results in large problem size requiring high computational effort and costs for practical applications and
often becomes computationally intractable particularly for dynamics and control problems. It is to over-
come these drawbacks of the 3D theory that approximations are made about the through-the-thickness
distributions of the field variables to arrive at a 2D model for analysis of multilayered piezoelectric
structures. Several 2D theories (1D for beams) for hybrid laminated beams and plates have been reported in
the literature. Early works were based on the classical laminate theory (CLT) approximation for the me-
chanical field without considering the coupling between the mechanical and the electric fields (Tzou, 1989;
Lee and Moon, 1989; Lee, 1990; Crawley and Lazarus, 1991). The limitation of CLT of not including the
shear deformation effect was addressed soon by using first order shear deformation theory (FSDT) (see e.g.
Jonnalagadda et al., 1994; Kapuria et al., 1997b) and refined third order theory of Reddy (1984) (sce e.g.
Pai et al., 1993; Peng et al., 1998) for the analysis of hybrid beams and plates under electromechanical
loading. These uncoupled 2D theories ignore constitutive equations for the electric displacements as well as
the equation of equilibrium for electrostatic charges and treat the electric field as an external loading
through the induced piezoelectric strain in the constitutive equation of stresses. This approach results in
inferior solutions for smart structures with embedded piezoelectric sensors and actuators with multiple
voltage inputs and/or sensor outputs. Huang and Wu (1996) have presented a FSDT solution including
electromechanical coupling for hybrid multilayered piezoelectric plates taking a cubic variation of the
electric potential across the laminate thickness. Mitchell and Reddy (1995) have presented a coupled hybrid
theory for piezoelectric composite plates based on the refined third order approximation for the dis-
placement field and layerwise approximation for the potential field. The equivalent single layer (ESL)
approximations used in the above works for the displacement field suffer from the common drawback that
they do not account for the so called zigzag effect in the distribution of inplane displacements across the
thickness and do not satisfy the shear stress continuity conditions at the interfaces between adjacent layers.
These limitations lead to inaccurate results for thick laminates and laminates with strong inhomogeneities
across the thickness. In order to overcome the drawbacks of the ESL theories, discrete layer theories
(DLTs) based on layerwise approximations for the displacements have been developed for elastic laminated
beams with induced actuation strain by Robins and Reddy (1991). This work has latter been extended by
Saravanos and Heyliger (1995), Heyliger et al. (1994) and Saravanos et al. (1997) for coupled layerwise
analysis of piezoelectric composite beams and plates. The DLTs have been shown to yield very accurate
results for both thin and thick laminates, but they are quite cumbersome and expensive for practical
problems because the number of unknowns depend on the number layers in the laminate. To overcome this
disadvantage in the case of elastic analysis, various zigzag theories have been proposed for describing the
deformations of elastic multilayered composite plates under mechanical loading. These theories retain the
zigzag form of distribution of the inplane displacements across the laminate thickness as in the DLTs, but
use the shear stress continuity conditions at the interfaces to make the number of unknowns independent of
the number of layers as in ESL theories. Among these theories, the third order zigzag theory proposed by
Cho and Parmerter (1993, 1994) and Shu and Sun (1994) were shown to be both efficient and accurate in
predicting the global as well as through-the-thickness behaviour of thin and thick multilayered plates under
mechanical loading. In this theory, the inplane displacement field is taken as a combination of a layerwise
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linear (zigzag) variation and a global cubic variation across the thickness. Transverse normal strains are
neglected.

The objective of the present work is to develop an efficient coupled electromechanical 1D model for the
static analysis of thin and thick multilayered composite beams with embedded or surface bonded sensory
and actuator layers. The displacement field approximations of the third order zigzag theory described
above are combined with a layerwise approximation for the electric potential so as to achieve the accuracy
and robustness of a coupled DLT while preserving the computational advantage of an ESL theory for the
mechanical field part. The transverse displacement field is obtained by superimposing a constant deflection
with a layerwise variation accounting for the piezoelectric transverse normal strain due to the electric
potential. This description allows for the non-uniform distribution of deflection across the piezoelectric
layers. Such a variation can be captured in a DLT only if the transverse displacement is also taken as
piecewise linear, which makes it even more cumbersome and computationally expensive. The inplane
displacement field is obtained by superimposing a layerwise contribution from the electric field intensity
along the axial direction on a third order zigzag variation. The conditions of continuity of the inplane
displacement and the transverse shear stress at each layer interface and zero shear stress at the top and
bottom surfaces of the laminate are enforced under general electromechanical loading situation. It reduces
the number of unknowns for the displacement field to three, which is the same as in FSDT. The governing
equilibrium equations and variationally consistent boundary conditions for the developed 1D model are
derived from the principle of virtual work. To illustrate the model, analytical solution is obtained for the
coupled piezoelectric response of a simply supported hybrid beam. The accuracy of the theory is assessed by
comparison with the exact 3D piezoelastic solution and uncoupled FSDT solution. Additional results are
presented to demonstrate the capability of the developed theory to model sensory, active as well as com-
bined response of smart composite beams with general laminate configurations.

2. Formulation of theory
2.1. Geometry of the hybrid beam

Consider a hybrid beam of solid cross-section of width » and thickness /, consisting of L orthotropic
layers with their principal material axis along the fibres at an arbitrary angle to the Cartesian coordinate
axis-x along its length. The geometry of the beam is shown in Fig. 1. Some of the layers can be piezoelectric
with class mm2 symmetry and poling along the thickness axis-z. The origin of the coordinate system (x,z) is
taken at the middle surface of the beam. The integer k denotes the layer number which starts from the
bottom of the laminate. The distance from the reference plane to the bottom surface of the kth layer is
denoted by z,_;. Each layer is perfectly bonded to its adjacent plies.

2.2. Constitutive equations

For a piezoelectric continuum which exhibits class mm2 symmetry with respect to principal material axes
X1, X2, x3(=z) and is polarised along direction z, the constitutive equations referring to the orthogonal
coordinate system (x,y,z) are given by (Auld, 1973; Tzou and Bao, 1995)

¢e=S8So+dE, D=do+E¢E, (1)

where the superscript T denotes matrix transpose. The components of stress g, engineering strain ¢, electric
field E and electric displacement D are given by
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Fig. 1. Geometry of the hybrid beam.

o=or 0, 0. T Tx rxy]T7 E=[E, E, EZ]T, e=l& & & Vp Vu yxy]T

D=[D, D, D.]".

b

S, d, € are respectively the matrices of transformed compliance coefficients, piezoelectric strain constants
and constant stress dielectric constants with

511 Slz 5:’13 0 0 516 0 0 6231
S Sn S 0 0 Sy 0 0 dxn &G én 0
q — S13 S23 S33 0 0 S36 =T 0 0 d33 - | = _
S = 0 0 0 544 5:,45 0 ; d = 214 é24 0 ; € = 6(1)2 6(2)2 EO . (2)
0 0 0 S5 S 0 dis ds 0 ¥
Sis S S 0 0 Se 0 0 ds
For a beam with small width, the following assumptions are made:
0.~0, 0,~0, 7,~0, 1,~0 E, ~0. (3)
On use of Eq. (3), the constitutive relations in Eq. (1) reduce to
F1- % sl e ]
Tox B O Q55 sz élS O Ez
(4)

)= lo o] lE]
DZ é31 0 ’yzx 0 ﬁ33 EZ
Wlth Qij = 1/Sij, é31 = a}lQ”, 515 = a15Q55, 7]11 = E]l — a15é15, 77]33 = E33 — g3lé31. It may be noted here that,
unlike most other studies, E, is not considered zero in the present formulation, since it is an electric field

induced by the piezoelectric coupling. This field may also be present due to non-uniform distribution of the
applied electric potential along the length of the beam.
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2.3. Displacements and potential field

The proposed 1D beam model combines a third order zigzag approximation for the inplane displace-
ment u through the thickness of the laminate with a layerwise approximation for the electric potential ¢
such that the continuity of the transverse shear stress at the interfaces between adjacent layers is satisfied in
presence of the electromechanical field. The transverse displacement field w is obtained by superimposing a
constant field across the thickness with a layerwise contribution that accounts for the piezoelectric out-of-
plane normal strain induced by the electric potential. Accordingly, the displacement and the potential fields
are assumed in the following form:

u(x,2) = wp(x) — 2wo(x) , + 2P () + 2E(x) + 2 (x) + @ Zf’(Z) (5a)
w(x, z) = wo(x) — d Z (), dlxz) = Z ¥ (2)¢/ (x) (5b)

with @* = dj; — &5 /0% and f7(z) = [ ¥/(z) dz. Here a subscript comma denotes differentiation. u; and y,

denote displacement and rotation variables of the kth layer. N is the number of points 2/ across the laminate

thickness for describing the variation of the potential field in the thickness direction. ¢’ are the electric

potentials at points z/ and ¥/(z) are the interpolation functions which are taken as linear in this work.
The strain—displacement and electric field—potential relations are

& Uy, EZ=Wz, Vo T U T Wy, & =)= Y = 0; E = _¢,x? E, = _(p,ﬂ E, =0. (6)

Using Egs. (4)—(6), transverse shear strain y,, and stress 7., are obtained as
N
Voo = W + 228 + 3270 — &5/ 0L Z V() Ta= Ol + 228+ 3270). (™)
=

The functions u;, ,, £ and y are determined using the following conditions:
1. The top and bottom surfaces of the beam are traction free i.e. t.|,_, ;» = 0. Using Eq. (7), it yields

E= Wy —¥,)/2h, n==-20¢; + ‘h)/3h2- )

2. The shear stress is continuous across each layer interface. Thus, from Eq. (7), we have, at the interface
between the (i — 1)th and the ith layers (i = 2,...,L),

Oslhy + 22048+ 32 ) = O iy + 2218+ 32 ] or

_ _. _. 9
0Oss W, + 2z:¢ + 32,'2’1] = lsgl['//ifl +2z48 + 32571’7] + Q’55[2(Z,- —zi1)E+ 3(25 - 21'271)’7} ®)

Applying the above relation recursively from i = 2 to k and making use of the traction free condition at the
bottom surface, t.|,__, = Q;S [, + 220¢ + 32%n] = 0, we obtain
OkslW + 22& + 3zm] = 2CFE + 6CEn, (10)

where Cf = 31| OLs(zi — zi-1) and C§ = Y°F | OLs(2? — z2,)/2. Substitution of the traction free condition
on the top surface, .|, , = Q%[ + 22,8 + 3225 = 0, into Eq. (10) for k = L yields

Cré+3Cn =0,

which is used to eliminate ¥, from Eq. (8), giving
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C=Rap,, n=Ry (11a)
with Ry = 4CL/h(hCE + 4CL), Ry = —4CE/3h(hCE + 4C%). Substitution of Eq. (11a) into Eq. (10) yields
v, = Ry, (11b)

where RS = 2(Ck/ 0% — zi)Rs + 3(2C% / Oks — 22)Ru.
3. The displacement u is continuous across each layer interface. Using Eq. (5a), it yields, for the interface
between the (i — 1)th and the ith layers,

N

Up = Ui +Zi71(¢i—l - l//I) + (ai_l - ai) ij(zi—l)¢;a i= 2; ooy L (12)

J=1

Substituting the expression for i, from Eq. (11b) into Eq. (12) and applying the resulting recursive relation
to each interface from i = 2 to %, the following expression is obtained for u:

K k N
we =uy + ZZH(RQ_I — R + Z(di Z (zi1) (13)
=2 i =

Considering that the mid-surface (z = 0) of the beam lies in the koth layer, denoting the mid-surface dis-
placement as u(x,0) = uy(x) and substituting the same in Egs. (5a) and (13), the latter equation can be
expressed as

N
we = uo + Ry, + ZR/(;jd)j,xa (14)
j=1
where
k ko k ko
i— z i— i kj —i— —i\ 1) —i— —i\ 1]
Zzl 1(R; b Zzifl(Rz I*Rz)a RO/ZZ(a lfa)f](zi—l)*Z(a L= a)f (zi).
i=2 i=2 i=2 i=2

Finally, substitution of Egs. (11a), (11b) and (14) into Eq. (5a) yields the following expression for u:
N . .
u:uO_ZWO,x_FRk(Z)wl +ZE§(Z)¢{)¢7 (15)

where Ry (z) = RY + zR% + 2Ry + 2Ry, F/(z) = @' f/(z) + Ry

It can be seen that the above displacement field contains three primary variables (ug, wo, ¥/,) excluding
the contribution from the potential variables ¢’. The number of the primary variables is thus the same as in
the FSDT theory. Some unique features of the model developed are

(1) It incorporates the kinematic interactions between adjacent plies with different constitutive properties
in presence of electromechanical field, even as the number of primary variables is independent of the
number of layers and is the same as that of smeared first order theory.

(2) It accounts for the transverse normal strain induced by the electric field and hence can model non-
uniform transverse displacement across the piezoelectric layers.

(3) The layerwise approximation of the electric potential enables effective modelling of the heterogeneity
in the electric field across the thickness, induced by embedded or surface bonded piezoelectric sensor and
actuator layers. The number of points N to be considered across the thickness for approximating the
potential field can be chosen independent of the number of laminae L. The detail of approximation of the
electric field can be selected based on the desired level of accuracy. The formulation allows for complete
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neglect of the electric potential in the elastic layers since their dielectric constants are usually of much lower
magnitude than those of the piezoelectric layers.

2.4. The governing equations

The equilibrium equations and the variationally consistent boundary conditions can be formulated in a
weak form using the principle of virtual work given by:

/(0,488,'—|—D,»5¢',-)dV: /(pfSui—qu))dA, (16)

where V' and A represent the volume and the surface of the piezoelectric continuum. fV 0;0¢;dV and
[, D;d¢,;dV represent the virtual work done respectively by the internal forces and the electric field.
[, pidu; dA4 and J, 43¢ dA are the virtual external works done by the applied surface tractions p; and charge
density ¢ respectively. o;, &, u; and D; denote respectively the components of stress, strain, displacement and
electric displacement.

Making use in Eq. (16) of the kinematical Egs. (5b) and (15) and the field-gradient Eq. (6), integrating it
through the thickness and applying the Green’s function to transfer all differentiations from the virtual
displacements and potential to their coefficients, the integrals in Eq. (16) can be expressed as:

/a,—é‘)e,-dV:/(0’x58x+fzx5?zx)dV
124 14

-/

N
= NywBug — My 8wo — (Pox — O0) 80, + > (S],, + 07,) 8¢ | dx

J=l1

—+ Nx 81/{0 — (Mx 6W07x — Mx,x 6W0) —+ Px 6!,01

+ > (s8¢, — (SL, + 0)) 6¢f}

J=1

(17)

/I/D,«Sd)y,-dV:/V(D 8¢, +D.3¢.) /Z G')d¢/dx + zNij&pf (18)

where N,, M,, P, O,, &, Q){ are stress resultants and H’/, G/ are electric displacement resultants defined as

h/2 h/2 L 2k
N, = / bo.dz, M, = / bzo,dz, Po= / bRy (2)0, dz
k=1 Y Zk-1

—h/2 —h/2

Zk—1

L Zy L Zk X . L _ Zk X
=> / bR(2) 1.0 dz, S;‘:Z / bFl(2)o.dz, Q] = b(efs/0k) / ()t dz,  (19)
—1 Zp_1 k= Zk—1 k=1

. n/2 n/2
Hf:/ bW (z)Dydz, G = / b¥/(z) D.dz.

—h/2 h/2

Making use of Eq. (5b), the external work term in Eq. (16) can be expressed as:

/A(pz Su; — qdp)dd = / Bl(p! — p2) Swo — (dsspl ' — d5p? 5¢™) — ' 8¢/] dx, (20)
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where p! and p? are the normal pressures on the bottom and top surfaces of the beam and ¢/ are the surface
charge densities at locations z/.

Since the variations of the field variables can be arbitrary, their coefficients in Eq. (16) must be zero.
Substituting expressions from Egs. (17), (18) and (20) into Eq. (16), collecting the coefficients of (Sug, dwy,
8y, 8¢’) and setting them to zero, we obtain the equilibrium equations and the variationally consistent
boundary conditions. The equilibrium equations thus obtained are:

6140 : Nx‘x = O,

6I’VO : Mx,xx +f; = 07

Slpl : Px,x - Qx - O;

8¢/ HI. -G =8I — 0l —bl¢ +dyp)) =0, (j=12,...,N),
where f. = b(p! — p?), IV = 1 for j = 1 and N = 0; otherwise, p) = —p? and dj; = dy;. The above equations

are subject to the following essential or natural boundary conditions:

uo or Ny;  wy or Myy;  woy or My Y or Py ¢ or S/ + 0] —H'; ¢/, or S (22)

(1)

Relations between the resultants and the field variables are obtained by using Egs. (4), (5b), (6) and (15) in
Eq. (19), as follows:

N

Nx = Alluo.x - BIIWO,xx + Fillljl,x + Z(Fill¢inr + ﬂi(f)l)’

=1

N
M, = Buug, — Diywo + Enyy, + Z(E{I(]b,[xx + ),
=1

N
P. = Fiiug, — Enywo + Gupy  + Z(G{I(Zs;x + ﬁéfﬁl)a
=1

. (23)
S = Fvljlu(),ux - Ejl'lwoﬁxx + G{llpl,x + Z(I:I{iqﬁlxx + {11(151)7
=1
O. = Dssiry, Q) :Dgslplv H = Dés‘//l - ZEJII ,lx’
=1
- i
, ) ) . ) .
G = Blutg — Bywose + Bithr+ D (B¢ + B D");
=1
with
h2o
[411,B11, D, Fii, En, Gy :/ b0y [1,2,2%, Ri(2), 2R (2), Ri (2)] dz,
—h/2
o ) . hiz
[FIJHEJII’GJIHH{I]: h/2bQ“F,{(z)[l,z,Rk(z),F,f(z)]dz,
; )2 _ B /2 _ (24)
81, B, By, By ] = / bex[l,z,Ri(2), F(2)] ¥'(z) . dz, B = / bijs; ¥, W', dz,
—h)2 —h/2
h/2 B . h/2 )
D55 = bQSS(RkJ)ZdZ, D;S = bélS 'I”(Z)Rk,z dZ

—h/2 —h/2



S. Kapuria | International Journal of Solids and Structures 38 (2001) 9179-9199 9187

Substitution of the expressions from Eq. (23) into Egs. (21) yields the following electromechanical equi-
librium equations in terms of the primary field variables (ug, wo, Y/, ¢’):

where U = [ugwop, ¢ ¢* ... "', P=[0£.03'G*...3"]" with § = b(¢' — I''d,p!). L;; are linear differential
operators with L;; = L; given by
Liu=4u( ). Lo=-Bu( ). Lis=Fi( ), Lisu =F}|( ) e T Bi( ) o
Ly =Di( ) Lz =—Eu( ) Loy = —E1 () e — B ( )uer L3z =Gu( ), — Dss,
Ly = Gy ) + B3 )e Lavmaes = HIY () e + (B + B T ER () o = B8 (m D) =1, N
(26)
The above system of ordinary differential equations is solved for given electromechanical loads and

boundary conditions. The transverse shear stress 7., can be obtained in two ways: (i) directly from the
constitutive equations as given in Eq. (7) and (ii) by integrating the 3D stress equilibrium equation as

4
Ty = — f—h/z 0, dz.

3. Analytical solution for a simply supported hybrid beam

In order to demonstrate the accuracy, applicability and robustness of the coupled piezoelectric laminate
theory developed above, an analytical solution is obtained for a hybrid beam of span a with simply sup-
ported ends. With reference to Eq. (22), the boundary conditions at the simply supported ends are

No=wo=M,=P.=¢, =8 =0, j=1,...,N atx=0,a (27)

The solution of Eq. (25), which identically satisfies the boundary conditions given by Eq. (27), is expressed
in terms of Fourier Series as:
(W07 ¢j7vaan Rw S)jcv G]) = Z(W07 ¢j7 Nxa Mw P‘cv S)/m G])n Sin ﬁx»
n;l (28)
(u07 lﬁla va Q;;H]) = Z(u07 lp] ) Qx7 Q){ij)n COs nx
n=1

with 7 = nn/a. The applied load f, and the applied charge density ¢/ are also similarly expanded in Fourier
series as

00

(ﬂvq/) = Z(ﬁvqj)n sin 7x. (29)

n=1

Substituting the expressions from Egs. (28) and (29) into the equilibrium Egs. (25) yields the following
coupled system of linear algebraic equations for the nth Fourier component.

e vl o) e
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The submatrices X, X", X, X are of sizes 3 x 3,3 x N, N x 3 and N x N respectively and are given by
Xit =m*dn, Xy =-wBu, X =Fi, X =ni'Dn, Xji=-nEn, X =G+ Dss,
uu uu ue =37 —nl ue —4 =2 nl ue =3~ —nl eu ue
X' =X" X = %Flll —npy, X3y = —(n4E{1 - Zﬁz)» X5 = n3G“ —npy; X =X
Xt = =l HE + w (B + B") + BN+ B, X=X () = 1,2,3, (Lm) =1,... N
Fr=0£0" 0=[g"q...d"], U=mmwil, & =[¢ ¢ ¢
(31)
Considering that both sensory and active piezoelectric layers can be present in the laminate, the electric
potential vector @ is subdivided into an unknown sensory component @, representing the voltage output at
the sensors and a known active component @, representing the applied voltage at the actuators such that

¢ = [®,; @,]. In accordance with the selected sensing and actuation configuration, Eq. (30) can be parti-
tioned and arranged in the following form:

qu X;:;e Un . Fn _ AX;{IJ@ ¢Z
[X Xff] { @ } - {Q’J —Xf:@Z} (32)

It may be mentioned here that it is possible in the above coupled form of equations to model the response of
the piezoelectric beam structure either in active or sensory or combined active-sensory mode.

4. Numerical results and discussion

The numerical illustrations presented in this section concern the assessment of the coupled zigzag dis-
placement — layerwise potential model in regard to its accuracy, its ability to capture the electromechanical
coupling phenomena and its robustness in modelling practical hybrid beam configurations in sensory,
active or combined mode. In order to validate the computer program developed for the numerical illus-
trations, results are obtained for a simply supported elastic composite flat panel in cylindrical bending
subjected to a single term mechanical loading f, = py sin(7ix), for which the present solution is modified by
using appropriate constitutive equations. The panel is made up of an asymmetric [0°/90°/0°/90°] laminate
with the following properties of the 0° layer: (i, Y2, Gy, Ga3) = (25,1,0.5,0.2) x 10° psi, Gi3 = Gia,
via = vi3 = vp3 = 0.25, d;; = 0. Here Y;, G;; and v;; are the Young’s moduli, shear moduli and Poisson’s ratios
respectively. The results obtained for span-to-thickness ratios S = a/h = 4, 6 are compared in Table 1 with
the elastic third order zigzag theory results presented by Cho and Parmerter (1993) wherein the response
entities are non-dimensionalised as w = 100Y,w/hS*py, it = Yiu/hpy, 6 = 6./po, T2+ = T-¢/po. The results for

Table 1
Response of an elastic multilayered beam under sinusoidal pressure load
S=a/h Present Cho and Parmerter (1993)
w(0.5a,0) 4 4.083 4.083
6 2.501 2.501
(0,0.5h) 4 —1.355 —1.35*
6 —3.698 —3.70*
6+(0.5a,0.5h) 4 26.68 26.7*
6 48.52 48.5*
2..(0,0) 4 1.952 1.95%
6 3.064 3.06

4Read from graphical representation.
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i, 6, and 7., have been read from their graphical representations in the above reference. The two results are
found to be in excellent agreement.

Detailed results are presented for simply supported hybrid beams made up of a substrate of graphite-
epoxy composite with piezoelectric layer(s) of PZT-5A bonded to its surface(s). All plies of the substrate
have equal thickness. The ratio of the piezoelectric layer thickness %, to the laminate thickness . has been
taken as 0.1 unless mentioned otherwise. The properties of graphite-epoxy composite are selected as (Xu
et al., 1995):

(YL, YT, GLT; GTT) = (181, 103, 717, 287) GP«':I7 d,'j = 0, (VLT7 V]T) = (028, 033),

, = (30.96,26.53) x 107 2’F m,
Mz M) = (

where L and T denote directions parallel and transverse to the fibres. The properties of PZT are taken as
(Xu et al., 1995):

(Y1, Y, Y3, Gpa, Gas, Gy1) = (61.0,61.0,53.2,22.6,21.1,21.1) GPa,
(Vi2, V13, v23) = (0.35,0.38,0.38),
(ds1, dsa, dss, dis, doy) = (—171,—171,374, 584, 584) x 107>m/V,
(11, 2o M133) = (1.53,1.53,1.50) x 10 F/m.

The following lamination schemes are considered with the orientation of the fibres given relative to x-axis
and stacking order mentioned from top to bottom:

(a) Symmetric substrate laminate with PZT layer bonded to its top face [p/0°/90°/90°/0°]. The letter p
indicates the piezoelectric layer.

(b) Asymmetric substrate laminate with PZT layer bonded to its top face [p/0°/90°/0°/90°].

(¢) Symmetric eight-layered substrate with PZT layer bonded to both top and bottom faces
[p/0°/90°/ + 45°)..

The first two laminates have been selected to assess the results of hybrid beams with symmetric and
asymmetric crossply laminates for the substrate against the available exact solutions. The laminate type c
has been chosen to present results for hybrid beams with a more general laminate configuration for the
substrate consisting of angle-ply laminae.

Following mechanical and electrical loads are considered:

1. A sinusoidal pressure on the top surface, p? = py sin(nx/a);
2. An actuating potential applied at the top surface, ¢" = ¢, sin(nx/a).

The interface of each PZT layer with the substrate is grounded (zero potential) for all applications. The
results for these loads are non-dimensionalised as follows with S = a/h, dr = 374 x 10712 CN "

1. (&, w) = 100(u, w/S)Y7/hS’po, (GrsTex) = (04/S, ) /Spo, ¢ = 10°¢Yrdr /hS°py ,  D. = D./drpy;
2. (a,w) = 10(u, w/S)/Sdrepy, (Gr, ) = (6:/10,8t)h/Yedrdy, ¢ = ¢/po, D. = D.h/100Yrd2,.

4.1. Beam with sensory piezoelectric layer under mechanical load
The accuracy of the developed coupled model in predicting response of a sensory hybrid beam subjected

to the mechanical load of case 1 is investigated by comparing the results for beams of types a and b with
symmetric and asymmetric substrate laminates with an exact piezoelectric solution. The exact 3D solution
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for hybrid composite plates in cylindrical bending (Brooks and Heyliger, 1994; Kapuria et al., 1997a) has
been modified slightly to make it applicable for beams by using appropriate constitutive equations. The
exact solution considers ¢, =0, 1,, =0, 7,, = 0 but o, # 0. The edge boundary conditions are taken as
w=0, 0,=0 and ¢ =0 at x =0, a. No a priori assumptions are made on the through-the-thickness
distributions of the response entities. These are obtained by exactly solving the governing field equations of
coupled piezoelasticity subject to the exact satisfaction of the boundary and interface continuity conditions.
FSDT results with shear correction factor k2, = 5/6 are also presented for comparison. Shear 7., in FSDT is
obtained by integrating the equilibrium equation. The top surface of the sensory layer is kept at charge free
condition (i.e. open-circuit condition). For the purpose of discretising the electric field across the thickness,
the piezoelectric layer is divided into four layers.

The results for the mid-surface deflection w, inplane displacement &, normal stress &, in the substrate and
the piezoelectric layer, transverse shear stress 7., predicted from the constitutive equation and the equi-
librium equation and the induced potential ¢ at the sensory layer are compared in Table 2 for three values
of S viz. 4 (thick beam), 10 (moderately thick beam) and 100 (thin beam). The through-the-thickness
distributions of u#, w, 6, and 7., for thick and moderately thick beams of types a and b are shown in Figs. 2—
4. The distribution of the induced sensory potential across the piezoelectric layer is shown in Fig. 5. It is
observed that the present results for #, w and &, are in good agreement with the exact solution for both
thick and thin hybrid beams with symmetric and asymmetric substrate laminates. The non-linear through-
the-thickness distributions of # and ¢, with slope discontinuities at interfaces have been very well captured
by the present theory. In contrast, FSDT has yielded far inferior results even for a moderately thick beam
with § = 10. While FSDT underestimates the central deflection w and the inplane displacement u at top face
respectively by 12.4% and 8.1% for a moderately thick beam of type a, the corresponding errors in the

Table 2
Comparison of results for sensory beams under pressure load of case 1
s Beam a [p/0°/90°/90°/0°] (hy,/h = 0.1) Beam b [p/0°/90°/0°/90°] (h,/h = 0.1)
Exact FSDT/exact Present/exact ~ Exact FSDT/exact Present/exact
w(0.52a,0) 4 —3.0636 0.688 0.997 —4.0352 0.734 0.997
10 —1.2971 0.875 0.996 —2.1656 0.919 0.995
100 —0.9444 1.008 1.000 —1.7873 1.011 1.000
i(0,0.5h) 4 2.4785 0.623 0.958 3.2611 0.736 0.970
10 1.6797 0.919 0.989 2.5113 0.956 0.993
100 1.5218 1.014 1.000 2.3610 1.016 1.000
7,(0.5a,0.5h) 4 —0.5140 0.559 0.905 —-0.6718 0.665 0.929
10 —0.3409 0.842 0.975 —0.5086 0.878 0.982
100 —0.3068 0.936 0.998 —0.4760 0.938 0.998
5.(0.5a,0.4"h) 4 —0.8478 0.810 0.953 —1.1177 0.905 0.969
10 —0.7065 0.972 0.988 —1.0157 0.996 0.993
100 —0.6764 1.016 1.000 —0.9935 1.018 1.000
7..(0,0) 4 —0.4063 1.086 1.005 —0.5373 1.100 1.013
(1.033) (0.938)
10 —0.4343 1.016 1.002 —0.5794 1.020 1.003
(1.003) (0.907)
100 —0.4402 1.003 1.000 —0.5886 1.004 1.000
(0.997) (0.892)
d;(O.Sa7 0.5h) 4 7.896 - 0.852 11.530 - 0.903
10 7.920 - 0.974 11914 - 0.983
100 7.884 - 1.000 11.944 - 1.000

The values for 7., given within brackets ( ) are obtained directly from the constitutive equation.
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Fig. 2. Through-the-thickness distributions of i, w, &,, 7., for thick (S = 4) sensory beam a under pressure load.

present results are only 0.4% and 1% respectively. Similarly, the error in predicted inplane stress G, in the
sensor layer reduces from as high as 15.8% in case of FSDT to 2.5% in the present case for the above beam.
The improvement in the present results over FSDT become more pronounced for thicker beams, wherein
simplified kinematic assumptions do not hold well. The shear stress distribution obtained by integrating
equilibrium equation using the present theory is also in excellent agreement with the exact solution for both
thin and thick beams. The direct constitutive approach yields comparatively less accurate shear distribu-
tion, but predicts the maximum shear stress quite accurately. Of particular importance is the ability of the
present theory to predict sensory potential with very good accuracy for thin to moderately thick beams. It
can be seen from Table 2 and Fig. 5 that the error in the predicted sensory potential is only 2.6% and 1.7%
for intermediate thick beams of types a and b respectively. The deviation almost vanishes (<0.03%) for thin
beams with S = 100.

The top surface of the sensor layer can be subjected to two electric conditions: (1) open-circuit condition
wherein the applied charge density on the surface is zero as stated before and (2) closed-circuit condition
wherein the surface is kept at an imposed potential (equal to zero). Results for the transverse displacement
and the electric potential of a thick sensory beam of type a with the above two electric conditions are
presented in Fig. 6 for two values of the sensory layer thickness ratio #,/h = 0.1 and 0.2. It is observed that
the electric boundary conditions have a definite effect on the value as well as the across-the-thickness
distribution of w as a result of different electric fields induced in the piezoelectric layer by piezoelectric
coupling. The effect becomes more pronounced for higher thickness of the piezoelectric layer. It reveals that
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Fig. 3. Through-the-thickness distributions of u, w, &,, 7., for moderately thick (S = 10) sensory beam a under pressure load.

the piezoelectric coupling effect increases with the increase in the piezolayer thickness to overall thickness
ratio. The slight variation in w in the piezoelectric layer as a result of the transverse strain induced due to
non-zero ds; piezoelectric constant has been very well captured by the present theory.

4.2. Beam with piezoelectric actuator layer under actuation potential

In this case, beams a and b are analysed for an actuation potential of case 2 imposed on the top surface
of the piezoelectric layer. The predicted results for w at the middle and top surfaces, # at the top surface, &,
at the substrate and the actuator layer, 7., at the actuator-substrate interface obtained by the direct ap-
proach (from the constitutive equation) and the post-processing approach (from the equilibrium equation)
and D, at the top surface of the actuator are presented in Table 3 for S = 4, 10 and 100. The corresponding
results of exact solution and FSDT solution are also tabulated for comparison. The through-the-thickness
variations of u#, w, 6, and 7., are shown in Figs. 7-9. The results depict that the present theory has captured
the through-the-thickness variation of w quite well even for a thick laminate as a result of the inclusion of
the out-of-plane normal strain induced by the electric field through the piezoelectric constant d3;. The
improvement of the present theory over FSDT in predicting w is very significant. The error in mid-surface
deflection reduced from 42.2% in FSDT to 5.6% in the present theory for a thick beam a with S = 4. For an
intermediate thick beam a (S = 10), the deviations of the FSDT and the present results for the same from



S. Kapuria | International Journal of Solids and Structures 38 (2001) 9179-9199 9193

0.5 e u 0.5 prpr )
t S=4, hy/h=0.1 ] [ — Exact ]
[ ] [ —— Present j
] [ - — FSDT ]
z/h | : : :
0.0 r . 0.0 |- 1
— — Present L
..... 1 F
0.5 NP PP IR PP ) %) U | W TR FETTaeee Ly
-4 -2 0 2 4 -4.0 -3.5 -3.0
@(0,2) w(0.5a,2)
""""""" | I '_ 0‘5 | rerTTTTTT —-'.'-_l__f_..’—-"/"
e Exact : r - r’_"m—? ............. s
— Present ] /"‘: ..............
- — FSDT ] [
] l‘ —— Exact
b 0.0 ': \  — — Present: equil. ]
i \ 1 ’ I A\ —- - Present: direct 1
i N ] i 2 FSDT :
0.5 Lol |\ ........ |....: _0‘5:. NP B T .\:\'.\‘
-1 0 1 -0.6 -0.4 -0.2 0.0
7,(0.5a,2) 724(0,2)
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the exact solution are 9.9% and 1.8% respectively. The present theory shows improvement over FSDT in
predicting # and ¢, too. It, however, yields very poor estimate of 7., when computed directly from the
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Fig. 6. Effect of electric boundary conditions on w and ¢ of a thick sensory beam a under pressure load with sensor layer thickness ratio
hy/h=0.1,0.2.

constitutive equation. The reason for the same can be traced to the absence of a layerwise linear term in the
expression of 7., in Eq. (7). 7., computed from the equilibrium equation, of course, yielded excellent
agreement with the exact solutions for all thickness ratios and laminate configurations. The predicted re-
sults for the accumulated electric displacement D. at the top surface of the actuated piezoelectric layer
match closely with the exact solution.

4.3. Combined sensing and actuation for deflection control

This example considers a hybrid beam of type c¢ consisting of a more general laminate configuration
[0°/90°/ £ 45°], for the substrate with a piezoelectric layer bonded to its either surface. The bottom pi-
ezoelectric layer acts as a sensor in open-circuit condition i.e. its bottom surface is kept charge-free. The
upper piezoelectric layer is used to compensate the mechanical deflections by applying proper actuation
potential to its top surface. The mid-surface deflections of the beam under a sinusoidal pressure load of case
1 and the actuation potential of case 2 with ¢, = 0, 400, 800 are plotted in Fig. 10. It is seen that the
deflection induced by the pressure load is reduced substantially with the application of an actuation po-
tential of ¢, = 800. The sensory potentials measured at the bottom surface of the sensor layer (¢') for
different actuation voltages are also shown in Fig. 10.
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Table 3
Comparison of results for actuated beams under potential load of case 2
S Beam a [p/0°/90°/90°/0° (h,/h = 0.1) Beam b [p/0°/90°/0°/90°] (h,/h = 0.1)
Exact FSDT/exact Present/exact  Exact FSDT/exact Present/exact
w(0.5a,0) 4 1.7370 0.577 0.944 2.2938 0.705 0.958
10 1.2837 0.901 0.982 1.8887 0.938 0.988
100 1.1866 0.999 1.000 1.8010 0.999 1.000
w(0.5a,0.5h) 4 1.1942 0.840 0.850 1.7465 0.926 0.901
10 1.1923 0.970 0.974 1.7971 0.985 0.983
100 1.1857 1.000 1.000 1.8000 1.000 1.000
#(0,0.5h) 4 —3.638 0.794 0.859 —4.022 0.834 0.883
10 -3.017 0.957 0.970 —3.470 0.967 0.976
100 —2.890 0.999 1.000 —3.557 0.943 0.943
6,(0.5a,0.5h) 4 —2.032 1.068 1.047 —1.959 1.063 1.045
10 —2.144 1.012 1.008 —2.058 1.012 1.008
100 -2.167 1.001 1.000 —2.079 1.002 1.000
6.(0.52,0.4"h) 4 1.617 0.859 0.875 1.734 0.889 0.896
10 1.429 0.972 0.975 1.574 0.979 0.980
100 1.389 1.000 1.000 1.541 1.000 1.000
7.(0,0.4h) 4 —6.583 1.052 1.041 —6.409 1.047 1.038
(0.099) (0.107)
10 —6.868 1.009 1.007 —6.659 1.008 1.006
(0.099) (0.106)
100 —6.927 1.000 1.000 —6.710 1.000 1.000
(0.099) (0.106)
D.(0.5a,0.5h) 4 —1.512 - 0.997 —1.515 - 0.997
10 —1.505 - 1.000 —1.508 - 1.000
100 —1.504 - 1.000 —1.507 - 1.001

The values for 7., given within brackets ( ) are obtained directly from the constitutive equation.

5. Conclusions

A novel coupled electromechanical model has been presented for the static analysis of multilayered
composite beams with surface bonded or embedded piezoelectric layers. The model combines a third order
zigzag representation of the inplane displacement with a layerwise representation of the electric potential
such that the interlaminar shear stress continuity conditions and shear free conditions on the top and
bottom surfaces are satisfied a priori under general electromechanical loading condition. The model also
includes the piezoelectric transverse normal strain which enables it to capture the non-uniform variation of
the deflection across the piezoelectric layers. The number of primary variables for the mechanical field is the
same as that of FSDT. Thus the model preserves the computational advantage of an ESL theory while
allowing for important local through-the-thickness variations of displacements and stresses and main-
taining sufficient detail in the approximation of electric fields.

The accuracy, applicability and robustness of the proposed theory have been demonstrated by obtaining
an analytical solution for simply supported hybrid beams and comparing the results with the exact piezo-
elastic solution and the uncoupled FSDT solution. The results depict that, overall, the developed mechanics
yields very good prediction of global as well as local laminate level response for both thin and thick smart
composite beams with symmetric or asymmetric laminate for the substrate. For the mechanical load case, the
present results for the deflection, the non-linear through-the-thickness variations of the inplane displace-
ment, the inplane normal stress and the transverse shear stress and the open circuit potential developed in
the sensor layer are in excellent agreement with exact solution for thin to intermediate thick beams. The



9196 S. Kapuria | International Journal of Solids and Structures 38 (2001) 9179-9199

05 gy 05 e
L S=4, hy/h=0.1 1 L
i N\ ] -
z/h ¢ ) ] :
0.0 - 7 0.0 - -
P Exact 3 ] [ — Exact
[ — — Present ] [ — — Present
[--eee FSDT ] N RS FSDT
-0.5 TN NN N 0.5 L FITITTE A AT A AT AT AT AT A
-4 -2 0 0.8 1.2 1.6
4(0,2) (0.5a,2)
0.5 T 0.5 — .
z/h [ ] -
0.0 |- 7 0.0 |- .
t — Exact E - — — Present: equil. ]
— — Present ] [ —- - Present: direct ]
----- FSDT ] [ -+ FSDT
0.5 Lobaiis, o 05—l iA
-2 0 2 - -4 0
7,(0.5a,2) 7.,(0,2)
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agreement is good in case of thicker beams too. The accuracy level increases drastically with the increase of
span-to-thickness ratio. For the potential load case, the deflection including its variation across the actuator
layer, the inplane displacement, the normal stress and the electric displacement developed at the actuated
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Fig. 10. Mid-surface deflection w and measured sensory potential ¢ of a sensory/active beam ¢ under pressure load with different

actuation potentials ¢,.

surface compare very well with the 3D solution for all lamination schemes. The shear stress in this case is,
however, very poorly predicted when computed directly from the constitutive equations. The error is due to
the absence of a layerwise linear term in the expression of the transverse shear stress. The shear stress
computed by integrating the equilibrium equation is again in close agreement with the exact solution.
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Comparison of the present results with FSDT solution has established the superiority of the developed
model over FSDT for all applications. The applications discussed here demonstrated the capability of the
proposed formulation to model sensory, active and combined response of smart composite beams.

Work is in progress to extend the model to the dynamics and control of smart beams. Moreover, ap-
plication of the formulation to general problems with different geometry and boundary conditions will
require development of a numerical method of solution such as the finite element method. Work in this
regard will be taken up in future.
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